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used for model development and possi-
bly the complexity of the resulting model. 
However, practitioners are well advised 
that increased model complexity will not 
necessarily lead to better or more accurate 
models.

Modelling resources
Books
Goodenough, K. and McKinion, J. (eds) 

(1992). Basics of insect modelling. 
American Society of Agricultural Engi-
neers. ASAE Monograph Number 10.

Grace, J. (2006). Structural equation mod-
elling and natural systems. (Cambridge 
Press).

Papjorgji, P. and Pardalos, P. (eds) (2009). 
Advances in modelling agricultural 
systems. (Springer).

Peart, R. and Shoup, W. (eds) (1998). Agri-
cultural systems modelling and simula-
tion. (CRC Press).

Vohnout, K. (2003). Mathematical model-
ling for systems analysis in agricultural 
research. (Elsevier).

Journals
Computers and electronics in agriculture. 

http://www.elsevier.com/wps/fi nd/
journaldescription.cws_home/503304/
description#description. (Elsevier).

Ecological modelling. http://www.elsevier.
com/wps/find/journaldescription.
cws_home/503306/description. (Else-
vier).

Environmental modelling and software. 
http://www.elsevier.com/wps/fi nd/
journaldescription.cws_home/422921/
description#description. (Elsevier).

Journal of biological dynamics. http://www.
tandf.co.uk/journals/titles/17513758.
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Conferences
IASTED International Conference on 

Modelling and Simulation. Annual. MS 
2009: http://www.iasted.org/CON-
FERENCES/home-670.html.

International Conference on User Mod-
elling, Adaptation, and Personaliza-
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UMAP 2009: http://umap09.fbk.eu/.

MODSIM – International Conference on 
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http://www.mssanz.org.au/mod-
sim09/.

Summary
Australia is now host to many thousands 
of introduced plant species, and about 
3000 of these have established self-sus-
taining populations in the wild. Of these, 
approximately 450 are classifi ed as inva-
sive weeds nationally or regionally, and 
are being targeted with control measures. 
Two questions arise in the context of cli-
mate change: what changes might occur 
in the distribution of the 450 species 
known to be highly invasive, and which 
species in the pool of 3000 might emerge 
to become future serious pests. We are 
applying an advanced modelling tool, 
MaxEnt, to provide a strategic overview 
of a large portion of the 450 highly inva-
sive species. Preliminary results suggest 
differing responses of weed species in 
northern and southern Australia linked 
to predicted major shifts in rainfall pat-
tern.

Introduction
Since the earliest European contact with 
the Australian continent in the late 16th 
Century, a steady stream of introduced 
species have been entering Australia’s eco-
logical communities with varying impacts 
on the native biota. Several thousand plant 
species have been introduced deliberately 
either as agricultural or horticultural stock, 
or as ornamental garden plants (Groves et 
al. 2005) or accidentally. Through complex 
pathways involving genetic change, devel-
opmental responses to new environments 
and chance dispersal events, a portion of 
these introduced plants have become es-
tablished as self-sustaining populations in 
the wild. Current estimates suggest that at 
least 3000 plant species have become nat-
uralized in Australia (Groves et al. 2003) 
with approximately 450 of these now clas-
sifi ed as highly invasive pests. The balance 
of the 3000 naturalized species represents 
a pool from which it is likely that new in-
vasive species might emerge, especially 
given that many of these are garden es-
capes and still available for sale or grown 
in gardens (Groves et al. 2005).
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The mechanisms by which an intro-
duced plant species makes the transition 
following introduction to establish self-
sustaining wild populations are complex 
and not fully understood. They appear to 
involve a combination of genetic changes, 
phenotypic and developmental changes, 
and ecological interactions (both positive 
and negative) within the new environ-
ment. It is clear that the climate experi-
enced by populations of a species is a pow-
erful driver of ecological and micro-evo-
lutionary processes. Climate directly in-
fl uences a species’ establishment, growth, 
reproduction, and survival. Climate also 
has indirect infl uences on invasive species 
via its impact on species within the eco-
logical communities of which an invasive 
species is a part. Climate data is thus an 
obvious candidate to use as a surrogate 
for detailed ecological models of how a 
species responds to its environment, with 
the added advantage that modelled cli-
mate data is available in GIS coverage for 
current climate conditions. Future climate 
models also allow us to make predictions 
of distributions under certain constraints 
or caveats.

Given the paucity of detailed genetic, 
physiological or population data for the 
majority of the 3000 naturalized species, 
other forms of inference about likely 
changes in distribution and abundance 
are required. Species distribution models 
(SDMs) represent one tool that may assist 
our management of invasive plants. Not 
only can SDMs guide our understanding 
of current distributions and the response 
of species to the cumulative infl uences of 
past conditions, they offer the prospect of 
some degree of prediction under novel 
environmental conditions such as climate 
change.

The motivation for our project is two-
fold. First, we wish to investigate through 
experimental methods the way in which 
key groups of invasive plant species will 
respond to climate change, particularly 
to increased CO2 concentration. This 
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work will inform later efforts to correlate 
predictions of shifts in distribution with 
species traits. Second, we are concerned 
with providing a fi rmer foundation for 
strategic planning at broad spatial scales. 
That is, we aim to provide information 
for strategists and decision-makers on the 
likely changes in threat levels from the 
large pool of naturalized plant species in 
Australia. We are using SDMs coupled 
with predicted climate, supplemented 
with other environmental data as appro-
priate, to identify species likely to undergo 
large shifts in distribution and potentially 
in abundance. Our work is collaboration 
between Macquarie University and the 
New South Wales Department of Environ-
ment and Climate Change supported by 
an ARC Linkage Grant.

The purpose of this paper is to describe 
our approach to species distribution mod-
elling using MaxEnt, and to provide an 
overview of emerging patterns in the pre-
dicted change in species distributions.

Modelling using MaxEnt
A large armoury is now available to any-
one wishing to develop SDMs (Elith et al. 
2006). MaxEnt (Phillips et al. 2006, Phillips 
et al. 2009) is a recent addition that is be-
ing widely adopted around the world to 
model species distributions. Its growing 
popularity is due to its fl exibility and ease 
of use regarding data types (continuous 
versus categorical), its ability to deal with 
interactions between variables and to in-
corporate information on ecological proc-
esses and species interactions provided 
only that these data can be pre-processed 
into GIS grids for incorporation into the 
environmental input set.

The term ‘MaxEnt’ has several mean-
ings and a short outline of the method’s 
history will help clarify the way in which 
the term is used for species distribution 
modelling. MaxEnt, which is a contraction 
of ‘maximum entropy’, is an approach to 
fi nding the most parsimonious probabil-
ity distribution for the states of entities in 
a complex ensemble of interacting enti-
ties given a set of constraints. It began in 
thermodynamics and statistical physics in 
the 1950s, but has since been adapted and 
applied to a vast array of systems includ-
ing language processing and linguistics, 
image analysis and reconstruction, com-
plex telecommunication networks, and 
fi tting complex models in many branches 
of biology, chemistry, economics and psy-
chology. In the context of SDM, it has been 
applied to fi nding the probability distribu-
tion of the occurrence of a species given 
a set of environmental conditions that 
has the maximum support from the en-
vironmental evidence and the minimum 
difference from a uniform probability dis-
tribution. MaxEnt is also the name given 
to the software package written by Steven 
Phillips and collaborators to implement 

the MaxEnt method for SDMs. From now 
on whenever the term MaxEnt is used in 
this paper, I will be referring to the Max-
Ent software developed by Phillips and 
co-workers.

In large comparative trials, MaxEnt 
has been shown to be a consistently good 
modelling tool (Elith et al. 2006, Graham 
and Hijmans 2006, Hernandez et al. 2006) 
and ranks alongside other newer meth-
ods such as boosted regression trees 
(BRTs) (De’Ath 2007, Elith et al. 2008) and 
multi-variate adaptive regression splines 
(MARS) (Leathwick et al. 2006). MaxEnt 
has been shown to perform well in the face 
of spatial uncertainty in species location 
records, and with as few as four occur-
rence records, making it a valuable tool 
for modelling large numbers of species 
with widely varying spatial accuracy and 
numbers of occurrence records. Naturally, 
however, a model based on highly inaccu-
rate location data or few location records 
must be considered with scepticism, but 
it is still possible extract some indication 
of the relationship between a species and 
its environment using MaxEnt when other 
methods would struggle.

One of the distinct advantages of Max-
Ent is that the mathematics implemented 
in the software package has been subject-
ed to rigorous analysis (Dudík et al. 2004, 
Dudík et al. 2005, Dudík et al. 2007) which 
is informed by a vast literature on the 
technical and practical aspects of imple-
menting the maximum entropy method 
in many areas as noted earlier. It shares 
this property with only a few other ap-
proaches to species distribution model-
ling (e.g. generalized linear modelling or 
GLM, generalized additive modelling or 
GAM).

Additional benefi ts of the MaxEnt pack-
age are it is free, it has a friendly user in-
terface, it is not platform-specifi c (exactly 
the same software will run on any com-
puter supporting Sun Microsystems’ free 
Java Runtime environment (JRE) which 
includes Windows, Mac, Unix and Linux 
systems), and it has a very powerful batch-
mode interface allowing large ensembles 
of species, perhaps using alternate envi-
ronmental data sets, to be modelled effi -
ciently. This means that, provided species 
distribution data and environmental data 
are mutually accessible and of good qual-
ity, allowing a number of people to eas-
ily cross-check or validate existing SDMs. 
Such an open and transparent approach to 
SDM promises a great deal with respect to 
the quality of predictions being made for 
invasive plant species.

It is extremely important when view-
ing the results of SDMs to remember that 
these are only models. They are always 
inaccurate simply because they are an ap-
proximation to complex reality, but may 
be found useful or informative in relation 
to some question regarding the way a 

species is responding to environmental 
conditions (Box 1979). Maximizing in-
formativeness or usefulness is a key chal-
lenge for any modelling task including 
SDM. The models will only be as good as 
the quality of the data fed into the model-
ling tool, and of the characteristics of the 
methodology used to build a model.

The MaxEnt software has a number of 
features that provide measures of model 
usefulness. It has a function to run mul-
tiple replications of a model leaving out 
random location records to provide sensi-
tivity or error maps. It also provides three 
methods of assessing model quality: regu-
larized gain, area under the curve (AUC) 
of a receiver operating characteristic plot, 
and clamping maps. Regularized gain is a 
measure of the goodness-of-fi t of a model 
adjusted for the number of features (de-
rived from the raw environmental varia-
bles). It is therefore equivalent in nature to 
the Akaike’s Information Criterion or AIC 
fi gure of merit for generalized linear or 
generalized additive models (Quinn and 
Keough 2002). The second measure, the 
AUC statistic, measures the quality of a fi t-
ted model when calculated for the training 
data set, and a measure of the quality of 
prediction for novel environments.

An additional feature of the MaxEnt 
software that is vitally important for its 
use in predicting distributions under cli-
mate change is the clamping feature. When 
asked to ‘project’ a model fi tted on current 
environmental data (a process referred to 
as ‘training’ the model) into novel envi-
ronments, the software highlights those 
parts of the predicted distribution that 
represent environmental conditions not 
experienced in training the model. Predic-
tions of occurrence in geographic regions 
with high levels of clamping are naturally 
to be treated with considerable caution.

MaxEnt was explicitly developed for, 
and is routinely used with, presence only 
data. That is, records of species occurrence 
collected or collated in ways where there 
is not information on species absence. 
So-called ‘presence-absence’ data (more 
correctly it is ‘present-not present’ data) 
comes from designed sampling projects 
using standardized sampling protocols. 
However, the motivation for using pres-
ence-only tools such as MaxEnt is to tap 
into the large body of data held by mu-
seums, herbaria, informal literature and 
so forth. To build SDMs in these circum-
stances requires the provision of informa-
tion plausibly associated with the general 
environment of the species but in which 
the species has not be recorded. The terms 
‘pseudo-absences’ or ‘background’ points 
are used interchangeably but background 
points has become the dominant term and 
is used in the context of MaxEnt.

Selecting the geographical scope of 
the region within which random back-
ground points are selected to represent the 
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environmental background can affect 
model quality. If the range of environ-
ments sampled to create the background 
is too broad, then the model may be over-
fi tted. If the range of background environ-
ments is not broad enough then the pre-
dicted distribution may be uninterpret-
able. Guidelines for the appropriate selec-
tion of background points are still a matter 
of active research for both MaxEnt, and 
other tools such as GAMs when they are 
applied to presence-only data. For MaxEnt 
guidelines for background selection are an 
active area of research with results now 
appearing in the literature (VanDerWal et 
al. 2009).

Sampling biases in space and time can 
lead to considerable errors in predicted 
distributions no matter what modelling 
method is used (Dudík et al. 2005, Phillips 
et al. 2009, MacKenzie et al. 2006). Max-
Ent provides two pathways to guide the 
training of a model in the presence of sam-
pling bias. First, a bias density map can be 
provided to MaxEnt giving a weighting to 
grid cells according to the degree of sam-
pling bias expected in each (Dudík et al. 
2005). The second is to use target group 
selection of background points (Phillips 
et al. 2009). Here spatially well-distributed 
sample locations of ecologically or behav-
iourally similar species (the ‘target group’) 
at which the model species was not found 
may be used as background points on 
which the model is trained. The target 
group should show similar sampling bi-
ases to the species being modelled. This 
method of bias adjustment is, of course, re-
stricted to those situations where reasoned 
arguments can be made to identify target 
species and where there are suffi cient sam-
ple locations.

Finally, the only constraints on the data 
used in the MaxEnt package are that it is 
available in a GIS raster or grid format, 
and all data layers are on the same grid 
over the same geographical region. Envi-
ronmental data can therefore be climate, 
presence of an obligate species (e.g. pol-
linator), soil type, an index of adjacency 
to watercourses, topographic ruggedness, 
and so forth, at any spatial scale that is ap-
propriate to the questions being asked. The 
statistical distribution of the data is not rel-
evant in most circumstances because the 
software can accept any combination of 
continuous or categorical variables meas-
ured on any scale.

Example applications
As an illustration of the results being pro-
duced by our SDM work using MaxEnt, we 
present a summary of our models for two 
invasive grasses in Australia: (1) a tropical 
species, Andropogon gayanus Kunth (Gam-
ba grass) and (2) Nassella neesiana Trin. & 
Rupr.) Barkworth (Chilean needle grass). 
The current and future distribution of 
these species was modelled using the full 

set of 19 bioclim variables (Busby 1991, Nix 
1986). Current climate data were obtained 
from the WorldClim website (www.world-
clim.org) where ‘current climate’ refers to 
average climate conditions from 1960 to 
2000. Future climate data was the CSIRO 
Mk3 Global Circulation Model used in the 
IPCC Third Assessment Report, also avail-
able at the WordClim website. Location 
data was obtained from Australia’s Virtual 
Herbarium (www.anbg.gov.au/avh) and 
the Global Biodiversity Information Facil-
ity or GBIF (www.gbif.org).

MaxEnt models for each species in-
dicate contrasting responses to climate 
change with the tropical species increas-
ing its distribution southwards but also in-
creasing the area of highly suitable climate 
within its limits of distribution (Figure 1). 
These results supports calls to have An-
dropogon gayanus acknowledged as a sig-
nifi cant weed in the tropical savannas of 
Australia (Rossiter et al. 2003), especially 
given its interaction with fi re and the like-
ly increase in fi re frequency under climate 
change (Pitman et al. 2007).

The temperate grass species, on the 
other hand, shows a southward trend but 
an overall decrease in highly suitable habi-
tat (Figure 2). These results highlight (1) 
that not all weed species are going to in-
crease in distribution as a result of climate 
change; (2) that targeted strategic control 
in the southern part of its range now will 
be extremely useful at reducing future im-
pacts; and (3) surveillance for new infesta-
tions in Tasmania should be given high 
priority.

Conclusions
MaxEnt has performed well, enabling 
many species to be modelled effi ciently us-
ing ecologically meaningful environmen-
tal data. Our preliminary work, involving 
modelling the distribution of a number of 
invasive grasses, indicates that predicted 
changes under climate change show a gen-
eral trend towards increased suitability of 
environments for already highly invasive 
species in northern Australia. In contrast, 
established species in southern Australia 
may face reduced environmental suitabil-
ity and are predicted to contract in distri-
bution. Given the satisfactory results from 
the fi rst phase of modelling, we are in the 
process of extending modelling to a much 
wider list of invasive plants to test the va-
lidity of these preliminary fi ndings.
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